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Abstract

‘The term connectionism is usually applied to neural networks. There are,
however, many other models that are mathematically similar, including classi-
fier syste mmune networks, autocatalytic chemical reaction networks, and
others. In view of this similarity, it is appropriate to broaden the term con-
nectionism. I define a connectionist model as a dynamical system with two
properties: (1) The interactions between the variables at any given time are
explicitly constrained to a finite list of connections. (2) The connections are
fluid, in that their strength and/or pattern of connectivity can change with
time.

This paper reviews the four examples listed above and maps them into a
common mathematical framework, discussing their similarities and differences.
It also suggests new applications of connectionist models, and poses some prob-
lems to be addressed in an eventual theory of connectionist systems.

DISCLAIMER

This report was prepared as an account of work sponsored by sn agency of the United Siates
Government. Neither the United States Government nor any agency thereof, nor any of their
smployees, mukes any wurranty, express or implied, or ussumes way lcgal linbility or cesponsi-
bility for the accurncy, conpletencss, or usefulness of uny information, apparatus, product, or
process disclosed, ot represents that its usc would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or seevice by trade name, trudemark,
manufucturer, or otherwisc does not necessarily constitute or imply its endorsement, recom.
mendation, or favoring by the United States Government or uny ngency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

MATRIBUTION OF THIS DOCIMENT IS UNLIMITED

To Appear in Physica D, special Volume "Emergent Computation"


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Contents

1

Introduction

1.1 Breaking the jargon barrier . . ... ... ...
1.2 What is connectionism? . . . . . . ... oo
1.3 Organization of this paper . . . . . .. .. ...............
Tie general mathematical framework of connectionist models

2.1 Thegraph . . . . . .. . o e
2.2 DYRaMICs . . . v v v v i e e e e e
Neural nets

3.1 Background . . .. .. ...
3.2 Comparison to a genericnetwork . . . . . .. ... ..
Classifier Systems

4.1 Background . . . ... ...
4.2 Comparison to genericnetwork . . . . ... ... o oo
43 Anexample . . . . .. .. e

4.4 Comparison of classifie.s and neural networks . .. ... .......

Immune networks

5.1 Background . . .. . ... e
5.2 Connectionist models of the immune system . . ... ... ... ...
5.3 Comparison to a genericnetwork . . . . .. .. ...
5.4 Comparison to neural n2tworks and classifier systems . . .. .. . ..
5.5 Directions for futureresearch . . . . . ... . . o 00

Autocatalytic networks
6.1 Background . . .. .. ... ...
6.2 Comparison to generic network . . .. . .. ... L

Other potential examples and applications

Conclusions
8.1 Openquestions . . .. ... . ... ... ... e
8.2 Rosetta stone . . . . . v v e e

Appendix: A superficial taxonomy of dynamical systems

- s

(1]

27

41
43
43
16

44



CTa=un)
fymufzr)

TTTOAEMAIOL

Figure 1: “Ptolemy”, in hieroglyphics, Demotic, and Greek. This cartouche played a
seminal role in deciphering hieroglyphics, by providing a hint that the alphabet was
partially phonetic [12]. (The small box is a “p”, and the half circle is a "t” - literally
it reads “ptolmis”.)

1 Introduction

This paper has several purposes. The first is to identify a common language across
several fields in order to make their similarities and differences clearer. A central goal
is that practitioners in neural nets, classifier systems, immune nets, and autocatalytic
nets will be able to make correspoudences between work in their own ficld as com-
pared to the others, more easily importing mathematical results across disciplinary
boundaries. This paper attempts to provide a coherent statement of what conncc-
tionist models 2re and how they differ in mathematical structure and philosophy from
conventional “fixed” dynamical systems models. [ hope that it provides a first step
toward clarifying some of the mathematical issues needed for a generally applicable
theory of connectionist models. Hopefully this will also provide a natural framework
for connectionist models in other areas, such as ecology, econommics, and game theory.

1.1 Breaking the jargon barrier

Language is the medium of cultural evolution. To a large extent differences in lar-
guage define culture groupings. Someone who speaks Romany, for example, is very
likely a Gypsy; the existence of a common and unique language is one of the most im-
portant bonds preserving Gypsy culture. At times, however, communication between
sub-cultures becotnes essential, so that we must map one language to another.

The language of science is particularly specialized. It is also pacticularly Huid;
words ire tools onto which we map ideas, and which we invent or redeline as necessary.
Our jargon evolves as science changes.  Although jargon is a nceessary feature of
cottumunication in science, it can also pose a barrier impeding scientific progress.



When models are based on a given class of phenomena, such as neurobiology or
ecology, the terminology used in tae models tends to reflect the phenomenon being
modeled rather than the underlying mathematical structure. This easily obscures
similarities in the mathematical structure. “Neural activation” may appear quite dif-
ferent from “species population”, even though relative to given mathematical models
the two may be identical. Differences in jargon place barriers to communication that
prevent results in one field from being transparent to workers in another field. Proper
nomenclature should identify similar things but distinguish those that are genuinely
different.

At present this problem is particularly acute for adaptive systems. The class
of mathematical models that are employed to understand adaptive systems contain
subtle but nonetheless significant new features that are not easily categorized by
conventional mathematical terminology. This adds to the problem of communication
between disciplines, since there are no standard mathematical terms to identify the
features of the models.

1.2 What is connectionism?

Connectionism is a term that is currently applied to neural network models such as
those described in references {58,15]. The models consist of elementary units, which
can be “connected” tcgether to form a network. The form of the resulting connection
diagram is often called the architecture of the network. The computations performed
by the network are highly dependent on the architecture. Each connection carries
information in its weight, which specifies how strongly the two variables it connects
interact with each other. Since the modeler has control over how the connections are
made, the architecture is plastic.

This contrasts with the usual approach in dynamics and bifurcation theory, where
the dynamical system is a fixed object whose variability is concentrated into a few
parameters. The plasticity of the connections and connection strengths means :hat
we must think about the entire family of dynamical systems described vy all possible
architectures and all possible combinations of weights. Dynaics occurs on as many
as three levels, that of the states of the network, the values of connection strengths,
and the architecture of the connections themselves.

Mathematical models with this basic structure are by no means unique to neural
networks. They occur in several other areas, including classifier systems, inunune
networks, and autocatalytic networks. They also have potential applications in other
arcas, such as economics, game-theoretic models and ecological models. [ propose
that the term connectionism be extended to this wider class of models.

By comparing connectinnist raodels for different phenomena using a conuuon
nomenclature, we get a clear view of the extent to which these models are similar
or different. We also get a glimpse of the extent to which the underlying phenom-
ens are similar or different. I emphasize the word glimpse to make it clear that we
are siniplifving a complicated phenomenon when we model it in connectionist terms.
Comparing two connectionist models of, for example, the nervous system and the



immune system, provides a means of extracting certain aspects of their similarities,
but we must be very careful in doing this; much richness and complexity is lost at
this level of description.

Connectionism represents a particular level of abstraction. By reduciag the state
of a neuron to a single number, we are collapsing its properties relative to a real
neuron, or relative to those of another potentially more comprehensive mathematical
formalism. For example, consider fluid dynamics. At one level of description the state
of fluid is a function whose evolution is governed by a partial differential equatior.
At another level we can model the iluid as a finite collection of spatial modes whose
interactions are described by a set of ordinary differential equations. The partial
differential equation is not a connectionist model; there are no identifiable elements
to connect together; a function simply evolves in time. The ordinary differential
equations are more connectionist; the nature of the solution depends critically on the
particular set of modes, their connections, and their coupling parameters. In flvid
dynamics we can sometimes calculate the correct couplings from first principles, in
which case the model is just a fixed set of ordinary differential equations. In contrast,
for a connectionist model there are dynamics for the couplings and/or connectious.
In a fully connectionist model, the connections and couplings would be allowed to
change, to find the best possible model with a given degree of complexity.

Another alternative is to model the fluid on a grid with a finite difference scheme
or a cellular automaton. In this case each element is “connected” to its neighbors, so
there might be some justification for calling these connectionist models. However, the
connections are tixed, completely regular, and have no dynamics. [ will not consider
them as “connectionist™.

Just as there are limits to what can be described by a finite number of distinct
modes, there are also limits to what can be achieved by conaectionist models. For
more detailed descriptions of many adaptive phenomena we may need models with
explicit spatial structure, such as partial differential equations or cellular automata.
Nonetheless, corinectionism is a useful level of abstraction, which solves some problems
efliciently.

The Rosetia Stone is a fragment of rock in which the same text is inscribed in
several different languages and alphabets. It provides a key that greatly facilitated
the decoding of these languages, but it is by no means a complete description of them.
My goal is similar; by presenting several connectionist models side by side, [ hope
to make it clear how some aspects of the underlying phenomena cotnpare with one
apother, but [ offer the warning that quite a bit has been omitted in the process.

1.3 Organization of this paper

In section 2, I describe the basic mathematical framework that is common to connec-
tionist models. [ then discuss four different connectionist models: neural networks.
classifier systems, immune networks, and autocatalytic networks. In ecach case T he.
gin with a background discussion, make a correspondence to the generic framework
described in section 2, and then discuss general issues. Finally, the conclusion cog-
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Figure 2: A directed graph.

tains the “rosetta stone”, a table mapping the jargon of each area into a common
nomenclature. [ also make a few suggestions for applications of connectionist modeis
and comment on what [ learned in writing this paper.

Connectionist models are ultimately dynamical systems. Readers who are not
familiar with terms such as automaton, map, or lattice model may wish to refer to
the Appendix.

2 The general mathematical framework of con-
nectionist models

In this section I present the mathematical framework of a “generic” connectionist
model. | make some arbitrary choices about nomenclature, in order to provide a
standard language, noting common synonyms whenever appropriate.

To first approximation a connectionist model is a pair of coupled dynamical sys-
tems living on a graph. [n some cases the graph itself may also have dynamics. The
remainder of this section explains this in more detail.

2.1 The graph

The foundation of any connectionist model is a graph, consisting of nodes (or ver-
tices) and connections, links, or edges between them as shown in Figure (2). The
graph describes the architecture of the system and provides the channels in which the
dynamics takes place. There are different types of graphs: for example, the links can
be either directed (with arrows), or undirected (without arrows). For some purposes,



such as modeling catalysis, it is necessary to allow more complicated graphs with
more than one type of node or more than one type of link.

For many purposes it is important to specify the pattern of connections, with a
graph representation. The simplest way to represent a graph is to draw a picture
of it, but for many purposes a more formal description is necessary. One common
graph representation is a connection matriz. The nodes are assigned an arbitrary
order, corresponding to the rows and columns of a matrix. The row corresponding to
each node contains a nonzero entry, such as “1”, in the columns corresponding to the
nodes to which it makes connections. For example, if we order the nodes of Figure
(2) lexigraphically, the connection matrix is

01010
1 0000
C=|00100 (1)
01000
01 00GO

If the graph is undirected then the connection matrix is symunetric. It is sometimes
economical to combine the representation of the graph and the connection parameters
associated with it into a matrix of connection parameters.

A connection list is an alternative of a graph representation. For example, the
graph of Figure (2) can also be represented as

a—b
a—d
b—a
c~c
d—b

e— b

Note that the nodes are implicitly contained in the conuection list. In some cases, if
there are isolated nodes, it may be necessary to provide an additional list of nodes
that do not appear on the connection list. For the connectionist models discussed
here isolated nodes, if any, can be ignored.

For a dense graph almost every node is connected to almost every other node.
For a sparse graph most nodes are connected to only a small {raction of the other
nodes. A connection matrix is a more efficient representation for a dense graph, but
a connection list is a more efficient representation for a sparse graph.

2.2 Dynamics

in conventional dynamical models the form of the dynamical system is fixed. The
only part of the dynamical system that changes is the state, which contains all the
information we need to know about the svstem to determine its future behavior.
The possible ways the “fixed" dynamical form “might change” are encapsulated as
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parameters. These are usually thought of as fixed in any given experiment, uut
varying from experiment to experiment. Alternatively we can think of the parameters
as knobs that can be slowly changed in the background. In reality the quantities that
we incorporate as parameters are usually aspects of the system that change on a time
scale slower than those we are modeling with the dynamical system.

Connectionist models extend this view by giving the parameters an explicit dy-
namics of their own, and in some cases, by giving the list of variables and their
connections a dynamic of its own. Typically this also involves a separation of time
scales. Although a separation of time scales is not necessary, it provides a good start-
ing point for the discussion. The fast scale dynamics, which changes the states of
the system, is usually associated with short term information processing. This is the
transition rule. The intermediate scale dynamics changes the parameters, and ic usu-
ally associated with learning. I will call this the parameter dynamics or the learning
rule. On the longest time scale, the graph itself may change. I will call this the graph
dynamics. The graph dynamics may also be used for learning; nopefully this will not
lead to confusion.

Of course, strictly speaking the states, parameters, and graph representation de-
scribed above are just the states of a larger dynamical system with multiple time
scales. Reserving the word state for the shortest time scale is just a convenience. The
association of time scales given above is the natural generalization of “conventional”
dynamical svstems. in which the states change quickly, the parameters change slowly,
and the graph is fixed. For some purposes, however, it might prove to be useful to
relax this separation, for example, letting the graph change at a rate comparable to
that of the states. Although all the models discussed here have at most three time
scales, in principle this framework could be iterated to higher levels to incorporate
an arbitrary number of time scales.

The information that resides on the graph typically consists of integers, real num-
bers, or vectors, but could in principle be any mathematical objects!. The state
iransition and learning rules can potentiaily be any type of dynamical system. For
systems with continuous states and continuous parameters the natural dynamics are
ordinary differential equations or discrete time maps. In principle, the states or pa-
rameters could also be functions whose dynamics are partial differential equations or
functional maps. This might be natural, for example, in a more realistic model of neu-
rons where the spatio-temporal form of pulse propagation in the axon is important
(39]. When the activities or parameters are integers, their dynamics are naturally
automata, although it is also common to use continuous dynamics even when the
underlying states are discrete.

Since the representation of the graph is intrinsically discrete, the graph dynamics
usually has a different character. Often, as in classifier systems, immune networks.
or autocatalytic networks, the graph dynamics contains random elements. In other
cases, it may be a deterministic response to statistical properties of the node states or
the connection strengths. for example, as in pruning algorithms. Dynamical systems

'The states could conceivably be more complicated mathematical objects, such as a functions.



with graph dynamics are sometimes called metadynamical systems [20,8).

In all of the models discussed here the states of the system reside on the nodes
of the graph?. The states are denoted z;, where ¢ is an integer labeling the node.
The parameters reside at either nodes or connections; §; refers to a node parameter
residing at node i, and w;; refers to a connection parameter residing at the connection
between node 1 and node j.

The degree to which the activity at one node influences the activity at another
node, or the connection strength, is an important property of connectionist medels.
Although this is often controlled largely by the connection parameters, w;;, the node
parameters §; may also have an influence, and in some cases, such as B-cell im-
mune networks, provide the only means of changing the average connection strength.
Thus, it is misleading to assume that the connection parameters are equivalent to the
connection strengths. Since the connection strength at any given instant may vary
depending on the states of the system, and since the form of the dynamics may differ
considerably in different models, we need to discuss connection strength in terms of a
quantity that is representation-independent, which is well defined foi any dynamical
model.

Fo: a continuous transition rule the natural way to discuss the connection strength
is in terms of the Jacobian. When the transition rule is an ordinary differential

equation, of the form :‘1:. = fi(z1,%2,...,2ZN), the instantaneous connection strength
of the connection from ncde i to node j (where i is an input to j) is the corresponding
term in the Jacobian matrix Jj = g‘: 5{_}. A connection is excitatory if J,;, > 0
and inhibitory if J; < 0. errularly, for discrete time dynamical systems (continuous
maps), of the form z;(t+1) = f,(z,,z2,...,2Zn), a connection is excitatory if [J;;] > 1

and inhibitory if [J;;| < 1. In a continuous system, the average connection strength is
(J,i), where () denotes an appropriate average; in a discrete system it is (|J;;|). To
make this more precise it is necessary to specify the ensemble over which the average
is taken.

For automaton transition rules, since the states z; are discrete the notion of in-
stantaneous connpection strength no longer makes sense. The average connection
strength may be defined in one of many ways; for example, as the fraction of times
node j changes state when node i changes state. In situations where z; is an inte-

ger but nonetheless approximately preserves continuity, if |Az,(t)| is the magnitude
of the change in z; at time ¢, the average connection strength can be defined as
( Atl!H»l)l)

laz(l "1a2,(1)>0

21t is also possible that states could be attached to connections, but this is not the case in any
of the models discussed here.



3 Neural nets
3.1 Background

Neural networks originated with early work of McCulloch and Pitts {42], Rosenblatt
[57], and others. Although the form of neural networks was originally motivated by
neurophysiology, their properties and behavior are not constrained by those of real
neural systems, and indeed are often quite different. There are two basic applications
for neural networks: one is to understand the properties of real neural systems, and the
other is for machine learning. In either case, a central question for developing a theory
of learning is: Which behaviors of real neurons are essential to their information
processing capabilities, and which are simply irrelevant side effects?

For machine learning problems neural networks have many uses that go consider-
ably beyond the problem of modeling real neural systems. There are several reasons
for dropping the constraints of modeling real neurons:

e We do not understand the behavior of real neurons.

¢ Even if we understood them, it would be computationally ineffcient to imple-
ment the full behavior of real neurons.

o It is unlikely that we need the full complexity of real neurons in order to solve
problems in machine learning.

e By experimenting with different approaches to simplified models of neurons, we
can hope to extract the basic principles under which they operate, and discover
which »f their properties are truly essential for learning.

Because of the factors listed above, for machine learning problems there has been
a movement towards simpler artificial neural netwerks that are less motived by real
neural networks. Such petworks are often called “artificial neural networks™, to dis-
tinguich them from the real thing, or from more realistic models. Similar arguments
apply to all the models discussed here; it might also be appropriate to say “artificial
immune networks” and “artificial autocatalytic networks”. However, this is cumber-
some and | will assume that the distinction between the natural and artificial worlds
is taken for granted.

Neural networks are constructed with simple units, often called “neurons™. Until
about five years ago, there were almost as many different types of neural networks
as there were active researchers in the field. In the simplest and probably currently
most popular form, each neuron is a simple element that sums its inputs with respect
to wreights, subtracts a threshold, and applies an activation function to the result. If
we assume that time is discrete so that we can write the dynamics as a map, then we

have
e t=1,2,... = time

o z,(t) = state of peuron :

10



¢ w;; = weight of connection from i to j
¢ 0; = threshold
e S = the activaticn function, often a sigmoidal function such as tanh.

The response of a single neuron can be characterized as
it+1) Zw,, (t)—0,). (3)

We could also write the dynamics in terms of automata, differential equations,
or, if we assume that the neurons have a refractory period during which they do not
change their state, as delay differential equations.

The instantaneous connection strength is

dz,(t +1 ’
6ii(:) - w;;S (z;wax-'(t) - 9;). (4)

where S’ is the derivative of S. If S is a sigmoid, then S’ is always positive and a
connection with w;; > 0 is always excitatory and a connection with w,; < 0 is always
inhibitory.

A currently popular procedure for constructing neural networks is to line the
neurons up in rows, or “layers”. A standard architecture has one layer of input units,
one or two layers of “hidden” units, and a layer of output units, with full connections
between adjacent layers. For a feed-forward architecture the graph has no loops so
that with fixed parameters information flows only in one direction, from the inputs
to the outputs. If the graph has loops so that the activity of a neuron feeds back on
itself then the network is recurrent.

For layered networks it is sometimes convenient to assign the neurons an extra
label that indicates which layer they are in. For feed-forward networks the dvnanics
across layers is particularly simpie, since first the input layer is active, then the first
hidden layer, then the next, etc., until the output layer is reached. If, for definiteness.
we choose tanh as the activation function, and let 1 refer to the input layer, 2 to the
first hidden layer, etc., the dynamics can be described by Equation (3). Note that
because the activity of each layer is synchronized and depends only on that of the
previous iayer at the previous time step, the role of time is trivial. Since each variable
only changes its value once during a given feed-forward step, we can drop time labels
without ambiguity.

I, = tanh(Zw,,,-x“—O;‘.)
1

I3k = t&ﬂh(zwzk)fzj—azk)

]

-
—

Tyl

f.anh(z wanLak = Ox). (-]
k
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From this point of view the neural network simply implements a particular family
of nonlinear functions, parameterized by the weights w and the thresholds ¢ {22]. For
feed-forward networks the transition rule dyramics is equivalent to a single (instan-
taneous) mapping. For a recurrent network, in contrast, the dynamics is no longer
trivial; any given neuron can change state more than once during a computation.
This more interesting dynamics effectively gives the network a inemory, so that the
set of functions that can be implemented with a givea number of neurons is much
larger. However, it becomes necessary to make a decision as ‘o when the computation
is completed, which complicates the learning problem.

To solve a given problem we must select valres of the parameters w and 0, i.e., we
must select a particular member of the family of functions specified by the network.
This is done by a learning rule.

The Hebbian learning rules are perhaps the simplest and most time honored. They
do not require detailed knowledge of the desired outputs, and are easy to implement
locally. The idea is simply to strengthen neurons with coincident activity. A simple
implementatior changes the weights according to the product of the activities on each
connection,

Aw,; = cxiz; (6)

Hebbian rules are appealing because of their simplicity and particularly because
they are local. They can be implemented under very general circumstances. However,
learning with Hebbian rules can be ineffective, particularly when there is more detailed
knowledge available for training. For example, in some situations we have a training
set of patterns for which we know both the correct input and the correct output.
Hebbian rules fail to exploit this information, and are correspondingly inefficient
when compared with algorithms that do.

Given a learning set of desired input/output vectors, the parameters of the net-
work can be determined to match these input/output vectors by minimizing an error
function based on them. The back-propagation algorithm, for example, minimizes the
least mean square error and is effectively a nonlinear least-squares fitting algorithm.
For more on this, see reference [38].

Since there is an extensive and accessible literature on neural networks, [ will not
review it further [58,15).

3.2 Comparison to a generic network

Neural networks are the canonical example of connectionism and theic mapping into
generic connectionist terms is straight forward.

e Nodes correspond to neurons.

o Connections correspond to the axons, synapses, and dendrites of real neu-
rons. The average connection strength is proportional to the weight of cach
connection.

12



¢ Node dynamics. There are many possibilities. For feed-forward networks the
dynamics is reduced to function evaluation. For recurrent networks the node
dynamics may be an automaton, a system of coupled mappings, or a system
of ordinary differantial equations. The attractors of such systems can be fixed
points, limit cycles, or chaotic attractors. More realistic models of the refractory
periods of the neurons yield systems of delay-differential equations.

e Learning rules . Again, there are many possibilities. Fcr feed-forward net-
works with carefully chosen neural activation functions such as radial basis func-
tions [11,13,54] where the weights can be solved through a linear algorithm, the
dynamics reduces to a function evaluatior. Nonlinear search algorithms such as
back-propagation are nonlinear mappings which usually have fixed point attrac-
tors. Nondeterministic algorithms such as simulated annealing have stochastic
dynamics.

e Graph dynamics. For real neural systems this corresponds to plasticity of
the syrapses. There is increasing evidence that plasticity plays an important
role, even in adults [2). As currently practiced, most neural networks do not
have explicit graph dynamics; the user simply tinkers with the architecture
attempting to get good results. This approach is clearly limited, particulariy
for large problems where the graph must be sparse and the most efficient way
to restrict the architecture is not obvious from the symmetries of the problem.
There is currently a great deal of interest in implementing graph dynamics for
neural networks, and there are already some results in this direction 26,4316,
64,66). This is likely to be~ome a major field of interest in the future.

4 Classifier Systems

4.1 Background

The classifier system is an approach to machine learning introduced by John Holland
[30]. It was inspired by many influences, including production systems in artificial
intelligence (48], population genetics, and economics. The central motivation was
to avoid the problem of brittleness encountered in expert systems and conventional
approaches to artificial intelligence. The classifier system learns and adapts using
a low-level abstract representation that it constructy itself, rather than a high-level
explicit representation constructed by a human being.

On the surface the classifier system appears quite different from a neural network,
and at first glance it is not obvious that it is a connectionist system at all. On
closer examination, however, classifier systems and neural networks arve quite similar.
In fact, by taking a sufliciently broad definition of “classifier systems™ and “neural
networks”, any particular implementation of either one may be viewed as a special
case of the other. Classifier systems and neural networks are part of the same class
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of models, and represent two different design philosophies for the connectionist ap-
proach to learning. The analogy between neural networks and classifier systems has
been explored by Compiani et al. [14], Belew and Garrity [9], and Davis (16] There
are many different versions of classifier systems; I will generally follow the version
originally introduced by Holland [30], but with a few more recent modifications such
as intensity and support [31].

At its core, the classifier system has a rule-based language with content addressable
memories. The addressing of instructions occurs by matching of patcerns or rules
rather than by the position of the instructions, as it does in traditional von Neumann
languages. Each rule or classifier consists of a condition and an action, both of
which are fixed length strings. One rule in\ skes another when the action part of one
matches the coudition part of the other. This makes it possible to set up a chain of
associations; when a given ruie is aciive it may invoke a series of other rules, effecting
a computation. The activity of the rules is mediated by a message list, wiicii serves
as a blackboard or short term memory on which the rules post messages for each
other. While many of the messages on the list are posted by other classifiers, some
of them are also external messages, inputs to the program posted by activity from
the outside world. In the most common implemeatations the message list is of fixed
length, 2lthough there are applications where its length may vary. See the schematic
diagram show in Figure (3). You may also want to refer to the example in Section 3.

The conditions, astious, and messages are all strings of the same fixed length. The
messages are strings over the binary alphabet {0, 1}, while the conditions and actions
are over the aiphabet {0,1, #}, where # is a “wildcard” or “don't care™ symbol. The
length of the message list controls how many messages can be active at a given time,
and is typically much smaller than the total number of rules.

The way in which a classifier system “executes programs” is apparent by examining
what happens during a cycle of its operation. At a given time, suppose there is a
set of messages on the message list, some of which were posted by other classifiers,
and some of which are inputs from the extzrnal world. The condition parts of all
the rules are matched against all the messages on the message list. A match occurs
if each symbol matches with the symbol in the corresponding position. The symbol
# matches everything. The rules that make matches on a given time step post their
actions as messages on the next time step. By going through a series of steps like this,
the classifier system can perform a computation. Note that in most implementations
of the classifier system each rule can have more than one condition part; a match
occurs only when both conditions are satisfied.

In general, because of the # symbol, more than one rule tnay match a given
message. The parameters of the classifier system (frequency of #, length of messages,
length of message list, etc.) are usually chosen so that the number of matches typically
exceeds the size of the message list. The rules then bid against each other to deaide
which of them will be allowed to post messages. The bids are used to compute a
threshold, which is adjusted to keep the nuinber of messages on the message list (that
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will be posted on the next step) less than or equal to the size of the message list.
Orly those rules whose bids exceed the threshold are allowed to post their messages
on the next time step>.

An important factor determining the size of the bid is the strength of a classifier,
which is a real number attached to each classifier rule. The strength is a central
part of the learning mechanism. If a classifier wins the bidding competition and
successfully posts a message, an amount equal to the size of its bid is subtracted from
its strength and divided among the classifiers that (on the previous time step) posted
the messages that match the bidding classifier’s condition parts on the current time
step*.

Another factor in determining the size of bids is the specificity of a classifier, which
is defined as the percentage of characters in its condition part that are either zero or
one, i.e., that are not #. The motivation is that when there are “specialisty” to solve
a problem, their input is more valuable than that of “generalists”.

The final factor that determines the bid size is the intensity z,(t) associated with
a given message. In older implementations of the classifier system, the intensity is a
boolean variable, whose value is one if the message is on the message list, and zero
otherwise. In newer implementations the intensity is allowed to take on real values
0 < z; £ 1. Thus, some messages on the list are “more intense” than others, which
means they have more influence on subsequent activity. Under the support rule, the
intensity of a message is computed by taking the sum over all the matching messages

on the previous time step, weighted by thie strength of the classifier making the match.
The size of a bid is '

bid = Const x w x speci ficity x F(intensity), (7)

where Const is a constant. F(intensity) is a function of the intensities of the matching
messages. There are many options; for example, it can be the intensity of the message
generating the highest bid, or the sum of all the matching messages [Ou).

To produce outputs the classifier system must have a means of deciding when a
computation halts. The most common method is to designate certain classifiers as
outputs. When these classifiers become active the classifier system makes the output
associated with that classifier's message. If more than cne output classifier becomes
active it is necessary to resolve the conflict. There are various means of doing this: a
simple method is to simply pick the output with the largest bid.

Neglecting the learning process, the state of a clagsifier rysten is determined by
the intensities of its messages (most of which may be zero). In many cases it is
important to be able to pass along a particular set of information from one time step
to another. This is done by a construction called pass-through. The # symbol in
the action part of the rule hay a different meaning than it does in the condition part

of the rule. In the action part of the rule it is used to “pass through™ inform.. .
ISome implementations allow stochastic bidding.
‘Other vatiants nre also used. Many authors think that this step is unnecessary, or oven haouful:

this w a topic of active controversy.
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from the message list on one time step to the message list on the next time step;
anywhere there is a # symbol in the action part, the message that is subsequently
posted contains either a zero or one according to whether the message matched by
the condition part on the previous time step contained a zero or a one.

The procedure described above allows the classifier system to implement any fi-
nite function, as long as the necessary rules are present in the system with the proper
strengths (so that the correct rules will be evoked). The transfer of strengths accord-
ing to bid size defines a learning algorithm, called the bucket brigade. The problem
of making sure the necessary rules are present is addressed by the use of genetic
algorithms that operate on the bit strings of the rules as though they were haploid
chromosomes. For example, point mutation randomly changes a bit in one of the
rules. Crossover or recombination mimics sexual reproduction. It is performed by se-
lecting two rules, picking an arbitrary position, and interchanging substrings so that
the left part of the first rule is concatenated to the right part of the second rule and
visa versa. When the task to be performed has the appropriate structure, crossover
can speed up the time required to generate a good set of rules, as compared to pure
point mutation®.

4.2 Comparison to generic network

The classifier system is rich with structure, nomenclature, and lore, and has a lite1-
ature of its own that has evolved more or less independently of the neural network
literature. Nonetheless, the two are quite similar, as can be seen by mapping the
clagsifier system to standard conrectionist terms.

For the purpose of this discussion we will assume that the classifiers only have one
condition part. The extension to classifiers witih multiple condition parts has Leen
made by Compiani ei al. {14].

¢ Nodes. The messages are labels for the nodes of the connectionist network.
For a classifier system with word length V the 2" possible messages range {rom
i =0,1,...,2¥ = 1. (In practice, for a given set of classifiers, only a small subsct
of these may actually occur.) The state of the i** node is the intensity r,. The
node activity also depends on a globally defined threshold 0(¢), which varies in
time.

o Connections. The condition and action parts of the classifier rules are a
connection list representation of a graph, in the form of Equation (2). Each
classifier rule connects a set of nodes {1} to a node j and can be written {i} — J.
A rule congisting entirely of ones and zeros corresponds to a single connection;
a rule with n don't care symbols represents 2" different connections. Note that
if two rules share their output node j and some of their input nodes i then there
are multiple connections hetween two nodes. The connection parameters w,,

YGeveral specialized graph manipulation operators, for example triggered cover operators, have
also been developed for classilier systems [56).
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are computed as the product of the classifier rule strength and the classifier rule
specificity i.e., w;; = specificity - sirength. When the graph is sparse there are
many nodes that have no rule connecting them so that implicitly w;; = 0.

Note that only the connections are represented explicitly; the nodes are im-
plicitly representea by the right hand parts of the connection representations,
which give all the nodes that could ever conceivably become active. Thus nodes
with no inputs are not represented. This can be very efficient when the graph
is sparse.

Although on the surface pass-through appears to be a means of keeping recur-
rent information, as first pointed out by Miller and Forrest [44), in connectionist
terms it is a mechanism for efficient graph representation. Pass-through occurs
when a classifier has # symbols at the same location in both its condition and
action parts. (If the # is only in the action part, then the pass-through value
is always the same, and so it is irrelevant.) The net effect is that the node that
is activated on the output depends on the node that was active on the input.
This amounts to representing more than one connection with a single classifier.
For example, consider the classifier 0# — 1#. If node 00 becomes active, then
the second 0 is “passed through”, so the output is 10. Similarly, if 01 becomes
active, the output is 11. The net result is that two connections are represented
by the same classifier. From the point of view of the network, the classifier
O# — 1 is equivzlent to the two classifiers 00 — 10 and 01 — 11. The net
effect is thus a more efficient graph representation, and pass-through is just a
representational convenience.

Transition rule. In traditional classifier systems a node ; becomes active
on time step ¢ + ! if it has an input conneciion i on time step ¢ such that
z,(t)w;; > 0. Using the support rule,

r(t+ 1) =Y zi(t)wij, (8)

where the sum is taken over all i that satisfy z,(t)w; > 0. With the support rule
the dynatmics is thus pi~cewise linear, with nonlinearity due to the effect of the
threshold 6. Without the support rule the intensity is z;(¢ + 1) = max,{z(t)}.

There are two approaches to computing the threshold 0. The simplest approach
is 10 simply set it to a constant value 0. A more commonly used approach in
traditional classifier systems is to adjust 0(t) on each time step so that the
number of messages that are active on the message list is less than or equal to
a constant, which is equivalent to requiring that the number of nodes active on
a given time step is less than or equal to a constant, In connectionist terms
this may be visualized as adding a speciai thresholding unit that has input and
output connections to every node.

Learning rule. The traditional learning algorithm for classifier svstews is
the bucket brigade, which is a particular modified Hebbian learning rule. (See
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Figure 4: The bucket brigade learning algorithm. A wave of activity propagates from
nodes {i} at time ¢ — 1 through node j at time t to nodes {k} at time ¢ -1. The solid
lines represent active connections, and the dashed lines represent inactive connections.
Strength is transferred from the input connections of j to output ~onnections of ;
according to Equation (11). The motivation is that connections “pay” the connections
that activate them.

Equation (6)). When a node becomes active, strength is transferred fromn its
active output connections to its active input connections. This transfer occurs
on the time step after it was active. To be more precise, consider a wave of
activity z;(¢) > 0 propagating through node j, as shown in Figure (4).
Suppose this activity is stimulated by m activities z,(¢t = 1) > 0 through in-
put connection parameters w;j, and in turn stimulates activities zx(¢ +1) > 0
through output connection parameters wj,. Letting /f be the Heaviside func-
tion H(z) = 1forz > 0, H{(z) = 0 for 2 € 0, the input connections gain
strength according to

}
Aw,, = ',','i'kku“)l"”(xzwlk"o) (")

AQuwyy = =rywpll(z,uy-0) (10)
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(11)

where Aw;; = w;;(t + 1) — w;,(¢t). All the quantities on the right hand side are
evaluated at time ¢.

This is only one of several variants of the bucket brigade learning algorithm; for
discussion of other possibilities see Reference [10).

In order to learn, the system must receive feedback about the quality of its
performance®. To provide feedback about the overall performance of the sys-
tem, the output connections of the system, or the effectors, are given strength
according to the quality of their nutputs. Judgements as to the quality must
be made according to a predefined evaluation function. To prevent the system
from accumulating useless classifiers, causing isolated connections, there is an
activity tax which amounts to a dissipation term. Putting all of these effects
together and following reference (21] we can write the bucket brigade dynamics
(the learning rule) as

'.\w.-j = %Zr,—w,kﬂ(r,w,k - 0) - J:.»w.-,-H(J:.-w.-,- - 9) + x,'P(t) - kw;,, (12)
k

where k is the dissipation rate for the activity tax, and P(t) is the evaluation
function for outputs at time ¢.

e Graph dynamics. The graph dynamics occurs through manipulations of the
graph representation (the classifier rules) through genetic algorithms such as
point mutation and crossover. These operations are stochastic and are highly
nonlocal; they preserve either the input or the output of each connection, but
the other part can move to a very different part ot the graph. The application
of these operators generates new connections, which is usually accompanicd by
the removal of other connections.

4.3 An example

An example makes the graph-theoretic view of classifier systems clearer. For example,
consider the classic problem of exclusive-or. (See also Belew and Gherrity [9].) The
exclusive-or function is 0 if both inputs are the same and 1 if both inputs are different.
The standard neural net solution of this problem is easily implemented with three
classifiers:

*1t ie clearly important to maintain an appropriate distribution of strength within a classilier
system, which does not overly favor input or output classifiers, and which can set up chains of
approptiate associations. Strength is added to classifiers that participate in good outputs, and then
the bucket brigade causes a local transfer of feedback, in the form of connection strength, from
outputs to inputs. Thiy is further complicated by the recursive structure of classifier systems. which
cortesponds to loops in the geaph. Mainteining an appropriate gradient of strength fcom outputs to
inputs has proved to be a dillicult issue in clagsifier systems.
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Figure 5: A classifier network implementing the exclusive-or in standard neural net
fashion. The binary numbers, which in classifier terms would be messages on the
message list, label the nodes of the network.

o 0# — 10: +1
o O# —11: +1
o 10 —»11: .2

(The number after the colon is w = strength x the specificity.) Although there
are only three classifiers, because of the # symbols they make five connections, as
shown in Figure (3).

With this representation the node 00 represents one of the inputs, and 01 repre-
sents the other input; the state of each input is its intensity. If both inputs are 1, for

node || intensity

00 l 111
01 1111
10 0O[l]1]1
11 0[1]0]0

Table 1: A wave of activity caused by the inputs (1,1) is shown in the following table.
 The numbers from left to right are the intensities on successive iterations. Initially
the two input messages have intensity 1, and the others are 0. The input messages
activate messages 10 and 11, and then 10 switches 11 o, Por the input (0.0),
contrast, the network inuuediately settles to a tixed point with the intensities of all

the nodes at zero.



example, then nodes 00 and 01 become active, in other words, they have intensity
> 0, which is equivalent to saying that the messages 00 and 01 are placed on the
message list. Assume that we use the support rule, Equation (8), that outputs occur
when the activity on the message list settles to a fixed point, and that the message
list is large enough to accommodate at least four messages. An example illustrating
how the computation is accomplished is shown ir the table of Figure (3).

This example is unusual from the point of view of common classifier system prac-
tice in several respects. (1) The protocol of requiring that the system settle to a fixed
point in order to make an output. A more typical practice would be to make an
output whenever one of the output classifiers becomes active. (2) The message list
is rather large for the number of classifiers, so the threshold is never used. (3) There
are no recursive connections (loops in the graph).

There are simpler ways to implement exclusive-or with a classifier system. For
example, if we change the input protocol and let the input meysage be simply the
two inputs, then the classifier system can solve thiz with four classifiers whose action
parts are the four possible outputs. This always solves the problem in one step
with a message list of length one. Note that in network terms this corresponds to
unary inputs, with the four possible input nodes representing each possible input
configuration. While this is a cumbersome way to solve the problem with a network,
it i3 actually quite natural with a classifier system.

4.4 Comparison of classifiers and neural networks

There are many varieties of classifier systems and neural networks. Once the classifier
system is described in connectionist terms, it becomes difficult to distinguish between
them. In practice, however, there are significant distinctions between neural nets
as they are commonly used and classifier systems as they are commonly used. The
appropriate distinction is not between classifiers and neural networ s, but rathe:
between the two design philosophies represented by the typical implementations of
connectionist networks within the classifier system and neural net communities. A
comparison of classifier systems and neural networks in a common language illustrates
their differences more clearly and suggests a natural synthesis of the two approaches.

o Graph topology and representation. The connection list graph representa-
tion of the classifier system is efficient for sparse graphs, in contrast to the con-
nection matrix representation usually favored by neural net researchers. This
issue is not critical on small problems that can be solved sy small networks
which allow the luxury of a densely connected graph. Ou larger problems. use
of a sparsely connected graph is essential. If a large problem cannot be solved
with a sparsely connected network, then it cannot feasibly be implemented in
hardware or on parallel machines where there are inevitable constraints on the
number of connections to a given node.

To use a sparse network it is necessary to discover a network topology suited to
a given problem. Since the number of possible network topologies is exponen-
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tially large, this can be difficult. For a classifier system the sparseness of the
network is controlled by the length of each message, and by the number of clas-
sifiers and their specificity. Genetic algorithms provide a means of discovering a
good network, while maintaining the sparseness of the network throughout the
learning process. (Of course, there may be problems with convergence time.)
For neural nets, in contrast, the most commonly used approach is to begin with
a network that is fully wired across adjacent layers, train the network, and then
prune connections if their weights decay to zero. This is useless for a large
problem because of the dense network that must be present at the beginning.

The connection list representation of the classifier system, which can be identi-
fied with that of production systems, potentially makes it easier to incorporate
prior knowledge. For example, Forrest has shown that the semantic networks
of KL-ONE can be mapped into the classifier system {23]. On the other hand,
another common form of prior knowledge occurs in problems such as vision,
when there are group invariances such as translation and rotation symmetry.
In the context of neural nets, Giles et al. [25] have shown that .0 invari-
ances can be hard-wired into the network by restricting the network weights
and connectivity in the proper manner. This could also be done with a classi-
fier system by imposing appropriate restrictions on the rules produced, by the
genetic algorithm. i

e Transition rule. Typical implementations of the classifier system apply a
threshold to each input separately, betore it is processed by the node, whereas
in neural networks it is more common to combine the inputs and then apply
thresholds and activation functions. It is not cleasr which of these approaches is
ultimately more powerful, and more work is needed.

Most implementations of the classifier system are restricted to either linear
threshold activation functions or maximum input activation functions. Neural
nets, in contrast, utilize a much broader class of activation functions. The most
comnmon example is probably the sigmoid, but in recent work there has been a
move to more flexible functions, such as radial basis functions {11,13,47.54] and
local linear functions {22,35,67). Some of these fur.ctions also have the significant
speed advantage of linear learning rules”. In smooth environments, smooth
activation functions allow more compact representations. Even in environments
where a priori it is not obvious tht smoothness plays a role, such as learning
boolean functions, smooth functions ¢ *n yield better generalization resuits
and accelerate the learning process (67). ...plementation of smoother activation
functions may improve performance of classifier systems in some problems.

Traditionally, classifier systems use a threshold computed on each time step in
order to keep the number of active nodes below a maximum value. Computation
of the threshold in this way requires a global computation that is expensive from

‘Linear learning rules are sometime criticized as “not local™. Linear algorithms are, however,
easily implemented in parallel by systolic arrays, and converge i) loganithunic time.
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a connectionist point of view. Future work should concentrate on constant or
locally defined thresholds.

From a connectionist point of view, classifiers with the # symbol correspond
to multiple connections constrained to have the same strength. There is no
obvious reason why their lack of specificity should give them less connection
strength. This intuition secems to be borne out in numerical experiments using
simplified classifier systems [63)].

e Learning rule. The classifier system traditionally employs the bucket brigade
learning algorithm, whose feedback is condensed into an overall performance
score. In problems where there is more detailed feedback, for example a set of
known input-output pairs, the bucket-brigade algorithm fails to use this infor-
mation. This, combined with the lack of smoothness in the activiation function,
causes it to perform poorly in problems such as learning and forecasting smooth
dynamical systems®. Since there are now recurrent implementations of back-
propagation [33], it makes sense to incorporate this into a classifier system with
smooth activation functions, to see whether this gives better performance on
such problems [9).

For problems where there is only a performance score, the bucket brigade is
more appropriate. Unfortunately, there have been no deta.led comparisons of
the bucket brigade algorithm against other algorithms that use “learning with
a critic’. The form of the bucket brigade algorithm is intimately related to
the activation dynamics, in that the size of the connection strength transfers
are proportional to the size of the input activation signal (the bid). Although
coupling of the connection strength dynamics to the activation dynamics is
certainly necessary for learning, it is not clear that the threshold activation
level is the correct or only quantity to which the learning algorithm should be
coupled. Further work is needed in this area.

5 Immune networks

5.1 Background

The basic task of the immune system is to distinguish between self and non-self, and to
eliminate non-celf. This is a problem of pattern learning and pattern recognition in the
space of chemical patterns. This is a difficult task, and the immune system performs it
with high fidelity, with an extraordinary capacity to make subtle distinctions between
molecules that are quite similar.

The basic building blocks of the immune system are antibodies. “y” shar-ed molecules
that serve as identification tags for foreign material; {ymphocytes, ceils that produce
antibodies and perform discrimination tasks: and macrophages. large cells that re-
move material tagged by antibodies. Lymphocytes have antibodies attached to their

*Stephen Pope, unpublished research.
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Figure 6: A schematic representation of the structure of an antibody, an antibody as
we represent it in our model, and a B-lymphocyte with antibodies on its surface that
function as antigen detectors.

surface which serve as antigen detectors. (See Figure 6.) Foreign material is called
antigen. A human contains roughly 10% antibodies and 10'? lymphocytes, organized
into roughly 108 distinct types, based on the chemical structure of the antibody. Each
lymphocyte has only one type of antibody attached to it. Its type is equivalent to
the type of its attached antibodies. The majority of antibodies are free antibodi=s,
i.e. not attached to lymphocytes. The members of a given tvpe form a clone, i.e.,
they are chemically identical.

The difficulty of the problem solved by the immune system can be estimated
from the facc that mammals have roughly 10° genes, coding for the order of 10°
proteins. An antigenic determinant is a region on the antigen that is recognizable by
an antibody. The nurnber of antigenic determinants on a protein such as myogiobin
is the order of 50, with 6 — 8 amino acids per region. We can compare the difFzulty
of telling proteins apart to a more familiar task by assuming that ecach antigenic
determinant is roughly as difficult to recognize as a face. In this case the patiern
recognition task performed by the immune system is comparable to recognizing a
nullion different faces. A central question is the mzans by which this is accomplished.



Does the immune system function as a gigantic look up table, like a neural network
with billions of “grandmother cells”? Or, does it have an associative memory with
computational capabilities?

The argument given above neglects the important fact that there are 10° distinct
proteins only if we neglect the immune system. Each antibody is itself a protein, and
there are 10® distinct antibodies, which appear to be a contradiction: How do we
generate 10% antibodies with only 10° genes? The answer lies in combinatorics. Each
antibody is chosen from seven gene segments, and each gene segment is chosen from
a “family” or set of possible variants. The total number of possible antibody types is
then the product of the sizes of each gene family. This is not known exactly, but is
believed to be on the order of 107 — 108. Additional diversity is created by somatic
mutation. When the lymphocytes replicate, they do so with an unusually large error
rate in their antibody genes. Although it is difficult to estimate the number of possible
types precisely, it is probably much larger than the number of types that are actually
present in a given organism.

The ability to recognize and distinguish self is learned. How the immune system
accomplishes this task is unknown. However, it is clear that one of the main tools
the immune system uses is clonal selection. The idea is quite simple: A particular
lymphoryte can be stimulated by a particular antigen if it has a chemical reaction
with it. Once stimulated it replicates, producing more lymphocytes of the same type,
and also secreting free antibodies. These antibodies bind to the antigen, acting as
a “tag” instructing macrophages to remove the antigen. Lymphocytes that do not
recognize antigen do not replicate and are eventually removed from the system.

While clonal selection explains how the immune system recognizes and removes
antigen, it does not explain how it distinguishes it from self. I'rom both experiments
and theoretical arguments, it is quite clear that this distinction is learned rather than
hard-wired. Clonal selection must be suppressed for the molecules of sclf. How this
actually happens is unknown.

A central question for self-nonself discriminacion is: Where is the seat of com-
putation? It is clear that a significant amount of computation takes place in the
lymphocytes, which have a sophisticated repertoire of different behaviors. It is also
clear that there are complex interactions between lymphocytes of the same type, for
example, between the different varieties of T-lymphocytes and B-lymphocytes. These
iateractions are particularly strong during the early stages of development.

Niels Jerne proposed that a significant component of the computationa! power of
the immune system may come from the interactions of different types of antibodies
and lymphocytes with each other (33,34). The argument for this is quite sumple:
Since antibodics are after all just molecules, then from the point of view of a given
molecule other molecules are effectively indistinguishable from antigens. e proposed
that much of the power of the immune system to regulate its own behavior may come
from interacting antibodies and lymphocytes of many different types?,

There is good experimental evidence that network interactions take place, particu-

ISuch networks are often called tdiotypic networks.
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larly in young animals. Using the nomenclature that an antibody that reacts directiy
with antigen is ABl, an antibody that reacts directly with AB1 is AB2, etc., antibod-
ies in categories as deep as AB4 have been observed experimentally'®. Furthermore,
rats raised in sterile environments have active immune systems, with activity between
types. Nonetheless, the relevance of networks in immunology is highly controversial.

5.2 Connectionist models of the immune system

While Jerne proposed that the immune system could form a network similar to that
of the nervous system, his proposal was not specific. Early work on immune net-
works put this proposal into more quantitative terms, assuming that a given ABI
tvpe interacted only with one antigen and one other AB2 type. These interactions
were modeled in terms of simple differential equations whose three variables repre-
sented antigen, AB1, and AB2 [55,28]. A model that treats immune interactions in
a connectionist network!!, allowing interactions Letween arbitrary types, was pro-
posed in reference [21]. The complicated network of chemical interactions between
different antibody types, which are impossible to modei in detail from first principles.
was taken into account by constructing an artificial antibody chemistry. Each anti-
gen and antibody type is assigned a random binary string, describing its “chemical
properties”. Chemical interactions are assigned based on complernentary matching
between strings. The strength of a chemical reaction is proportional to the length
of the matching substrings, with a threshold below which no reaction occurs. Even
though this artificial chemistry is unrealistic in detail, hopefully it correctly captures
some essential qualitative features of real chemistry.

A model of gene shuffling provides metadynamics for the network. This is most
realisticaily accomplished with a gene library of patterns, mimicking the gene fam-
ilies of real organisms. These families are randomly shufiled to produce an initial
population of antibody types. This gives an initial assignment of chemical reac-
tions, through the matching procedure described above, including rate constants and
other parameters'?. Kinctic equations implement clonal selection; some types are
stimulated by their chemical reactiuns, while others are suppressed. Types with no
reactions are slowly flushed from the system so that they perish. Through reshuflling
of the gene library new types are introduced to the system. [t is also possible to
sitnulate somatic mutation through point mutations of existing types, proportional
to their rate of replication.

[t 18 difficult to model the kinetics of the immune system realistically. There are
five different classes of antibodies, with distinct interactions and properties. There are

19This classification of antibodies should not be coufused with theie type: a given type can si-
multancously be AB! and AB2 relative to dilferent antigens. and many dilferent types may be
ABL

""Another connectionist model with a somewhat dilferent plulosophy was also proposed by 1ol
mann [29).

T he genetic operntions described here are mote soplusticated than those actually used w eelor-
ence (21); more realistic mechanisms have been employed in subsequent work [50.17,158].



different types of lymphocytes, including helper, killer and suppressor T-cells, which
perform regulatory functions, as well as B-cells, which can produce free antibodies. All
of these have developmental stages, with different responses in each stage. Chemical
reactions include cell-cell, antibody-antibody, and cell-antibody interactions. Fur-
thermore, the responses of cells are complicated and often state dependent. Thus,
any kinetic equations are necessarily highly approximate, and applicable to only a
subset of the phenomena.

In our original model we omitted T-cells, treating only B-cells. (This can also be
thought of as modeling the response to certain polymeric antigens, for which T-cells
seem to be irrelevant.) We assumed that the concentration of free antibodies is in
equilibrium with the concentration of lymphocytes, so that their populations can be
lumped together into a single concentration variable. Since the characteristic time
scale for the production of free antibodies is minutes or hours, while that of the pop-
ulation of lymphocytes is days, this is a good approximation for some purposes. It
turns out, however, that separating the concentration of lymphocytes and free anti-
bodies and considering the cell-cell, antibody-antibody, and cell-antibody reactions
separately gives rise to new phenomena that are important for the connectionist view.
In particular, this generates a more interesting repertoire of steady states, including
“mildly excited” seif-stimulated states suggestive of those observed in real immune
systems (50,17,18].

5.3 Comparison to a generic network

As with classifier systems and neural networks, there are several varieties of immune
networks (21,17,29,63], and it is necessary to choose one in order to make a compari-
son. The model described here is based on that of Farmer, Packard and Perelson (21),
with some modifications due to later work by Perelson [30] and DeBoer and Hogeweg
(17]. Also, since this model only describes B-cells, whenever necessary I wil! refer to
it as a B-cell network, to distinguish it from models that also incorporate the activity
of T-cells.

To discuss immune networks in connectionist terms it is first necessary to make
the appropriate map to nodes and connections. The most obvious mapping is to
assign antibodies and antigens to nodes. However, since antibodies and antigens typ-
ically have more than antigenic determinant, and ~ach region has a distinct chemical
shape'?, we could also make the regions (or chemical shapes) the fundamental vari-
able. Since all the models discussed above treat the concentration of antibodies and
lymphocytes as the fundamental variables, [ shall make the identification at this level.
This leads to the following connectionist description:

o Nodes correspond to antibodies, or more accurately, to distinct antibody types.
Antigens are another type of node with difterent dynaraics: from a certain point
of view the antigen concentrations may be regarded as the input and output

BChemical shape® here means all the factors that influence chemical properties, ncluding ge-
otetry, charge, polarigation, elc.



nodes of the network!®. The free antibody concentrations, which can change on
a rapid time scale, are the states of the nodes. They are the immediate indica-
tors of information processing in the network. The lymphocyt« concentrations,
which change on an intermediate time scale, are node parameters. (Recall that
there is a one-to-one correspondence between free antibody types and lym-
phocyte types). Changes in lymphocyte concentration are the mechanism for
learning in the network.

e Connections. The physical mechanisms which cause connections between
nodes are chemical reactions between antibodies, lymphocytes, and antigens.
The strength of the connections depends on the strength of the chemical reac-
tions. This is in part determined by chemical properties, which are fixed in time,
and in part by the concentrations of the antibodies, lymphocytes, and antigens,
which change with time. Thus the instantaneous connection strength changes
in time as conditions change in the network. The precise way of representing
and modeling the connections is explained in more detail in the following.

e Graph representation. To model the notion of “chemical properties” we
assign each antibody type a binary string. To determine the rate of the chemical
reaction between type i and type j, the binary string of type i is compared
to binary string of type j. A match strength matrix m;; is assigned to this
connection, which depends on the degree of complementary matching between
the two strings. Types whose strings have a high degree of complementary
matching are assigned large reaction rates. Since the matching algovithm is
symmetric!® m;; = mj,.

There is a threshold for the length of the complementary matching region be-
low which we assume that no reaction occurs and set my; = 0. Since m,, is
the connection matrix of the graph, setting m;; = 0 amounts to deleting the
corresponding connection from the graph. We thus neglect reactions that are
so weak that they have an insignificant effect on the behavior of the network.
The match threshold together with the length of the binary strings determines
the sparsencss of the graph. When the system is sparse the matrix m,, can also
be represented in the form of a connection list. The match strength for a given
pair of immune types does not change with time. However, as new types are
added or deleted from the system, the m,, that are relevant to the types in the
network change.

The graph dynamicy provides a mechanism of learning in the immune system;
as new types are tested by clonal selection, the graph changes, and the system
“evolves”. Another mechanism for dynamical learning depends on the lympho-
cyte concentrations, as discussed below.

"uturs models should inelude chomical types identifiod with self a yet another typs of node.
B our onginal paper (21 we also conmidered the cave of avymmetric internctions. However, this
in diflicult to justify chemically, and it in probably safe to asuime that tie connections ace synimet e

(28).
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o Dynamics. The m;; are naturally identified as connection parameters for the
network. For any given i and j, however, the m,; are fixed. Thus. learn-
ing in B-cell immune networks occurs not by changing connection paran:ters,
but rather by changing the lymphocyte concentration, which is a paran.ater
of the nodes. The net reaction flux (or strength of the reaction) is a nonlin-
ear function of the lymphocyte concentration. Thus changing the lymphocyte
concentration changes the effective connection strength. This is a fundamen-
tal difference between neural networks and B-cell immune networks; while the
connection strength is changeable in both cases, in B-cell immune networks all
the connection strengths to a given node change in tandem as the lymphocyte
concentration varies. However, since the reaction rates are nonlinear functions,
a change in lymphocyte concentration may effect each connection differently,
depending on the concentration of the other nodes.

The dynamics of the real immune system are not well understood. The situation
is similar to that of neural networks; we construct simplified heuristic immune
dynamics based on a combination of chemical kinetics and experimental obser-
vations, attempting to recover some of the phenc mena of real immune systems.
The real complication arises because lymphocytes are cells, and understand-
ing their kinetics requires understanding how they respond to stimulation and
suppression by antigens, antibodies, and other cells. At this point our under-
standing of this is highly approximate and comes only from experimental data.
The kinetic equations used in our original paper were highly idealized [21]. The
more realistic cquations quoted here are due to DeBoer and Hogeweg!® [17].

Let ¢ label the nodes of the system, r; the concentration of antibodies, and
0; the concentration of lymphocytes!”. The amount of stimulation received by
lymphocytes of type i is approximated as

8 = Zm,-,.z:,— (13)
)

The rate of change of antibody concentration is due to production by lym-
phocytes, removal from the system, and binding with other antibodies. The

cquations are
(‘1‘,‘

-‘Tt--O.f(s.)—k:.»-cz.-s.-. (14)
k is a dissipation constant and c the binding constant. f is a function describing
the degree of stimulation of a lymphocyte. Experimental observations show
that f is bell-shaped. A function with this rough qualitative behavior can be

'*More reslistic equations have slso proposed by Segel and Parelson [00), Perelson (51.30), and
Varela et al. [63).

'Note that we use 0 to repeesent lymphocyten because they play the role of node paranetees.
However, they are not thresholds, but eather quantities whose priniary function w to modify con-
nection strength,
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constructed by taking the product of a sigmoid with an inverted sigmoid, for

example
Z’Cg

z) = :
/() (k1 + z)(k2 + 2)
The production of lymphocytes is due to replenishment by the bone marrow,
cell replication, and removal from the system. The equations are
do;

- ="+ POif(si) = kbs. (16)

(15)

r is the rate of replenishment and p is a rate constant for replication.

5.4 Comparison to neural networks and classifier systemns

There are significant differences between the dynamics of irunune networks and neural
networks. The most obvious is in the form of the transition and learning rules. The
nodes of the imimnune network are activated by a bell-shaped function rather than
a sigmoid function. Since the bell-shaped function undergoes an inflection and its
derivative changes sign, the dynamics are potentially more complicated.

B-cell immune networks differ from neural networks in that there is no variable
which acts as a connection parameter. Instead, the connection strength is indirectly
determined by the node parameters (concentrations and kinetic equations). The
instantaneous connection strength is

oz,

5‘; (0:f'(8i) = cxi)mij — cs; = kb, (17)

where 6;, = 0 for i # j, 6, = 1. All of the terms in this equation except for f' are
greater than or equal to zero. For low values of 34, f'(s,) > 0, but for large values of s,.
f'(s:) < 0. Given the structure of these equations, as s, increases, at some point before
[ reaches a maximum, all the connections to a given node chanrte from excitatory to
inhibitory. The point at which this happens depends on the lymphocyte concentration
of 1, the antibody concentration, the concentration of the other antibodies, and on the
exact form of the stimulation function. Thus, in coatrast to neural networks ov the
classifier yystem, a given counection can be either excitatory or inhibitory depending
on the state of the system,

The connections in the immune system are chemical reactions.  Iusofar as the
inunune system s well-stizred, this allows a potentially very large connectivity, as high
ag the number of different chemical types a given type can react with, ln practice,
the number of types that a given type reacty with can be as high as about 1600,
Thus, the connectivity of real immune networks is apparently of the same order of
magnitude as that of real nearal networks.,

One of the central differences hetween the Becell immune networks and neaeal or
classifier networks is that for the immuane system theee are no independent parameters
on the connections, If the average strength of a connection to a given node cannot be
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adjusted independently of that of other nodes, the learning capabilities of the network
may be much weaker or more inefficient than those of networks where the connection
parameters are independent. As discussed in the next section, this may be altered by
the inclusion of T-cells in the models.

5.5 Directions for future research

Whether immune networks are a major component of the computational machinery of
the immune system is a subject of great debate. The analogy between neural networks
and immune networks suggests that immune networks potentially possess powerful
capabilities, such as associative memory, that could be central to the functioning
of the immune system. However, before this idea can reach fruition we need more
demonstrations of what immune networks can do. At this point the theory of immune
networks is still in its infancy and their utility remains an open question.

The immune network may be able to perform tasks that would be impossible for
individual cells. Consider, for example, a large antigen such as a bacterium with
many distinct antigenic determinants. If each region is chemically distinct, a single
type can interact with at most a few of them (and thus a single cell can interact
with at most of few of them). Network interactions, in contrast, potentially allow
different cells and cell types to communicate with each other and make a collective
computation to reinforce or suppress each other’s imimune responses. For example,
suppose A, B, C and D are active sites. It might be useful for a network to implement
-an associative memory rule such as: If any three of A, B, C, and D are present, then
generate an immune response; otherwise do not. Such an associative memory requires
the capability to implement a repertoire of Boolean functions. A useful rule might be:
Generate an immune response if active site A is present, or active site B is present,
but not if both are present simultaneously”. Such a rule, which is equivalent to taking
the exclusive-or function of A and B, might be useful for implementing self tolerance,
Such logical rules are casily implemented by networks. It is difficult to sce how they
could be implemented by individual cells all of the same type.

Inunune memory is another task in which networks may play an essential role.
Currently the prevailing belief is that immune memory comes about because of special
memory cells. [t is certainly true that some cells go into developmental states that
are indicative of memory. Although the typical lifetime of a lymphocvte is about five
days, there are some lymphocytes that have been demonstrated to pe sist for as long
as a month. This is a far cry, however, from the cighty or more years that a human
may display an immune memory. Since cells are normally flushed from the system at
a steady rate, it is difficult to believe that any individual cell could last this long. It
is ouly the type, then, that persisty, but in order to achieve this individual cells must
periodically replicate themselves. However, in order to hold the population stable
the replication rate must be perfectly balanced against the vemoval rate, This is an
unstable procesy unless there is feedback holding the population stable. Tt is diflicult
to see how feedback on the population size can be given nnless there are network
imteractions,
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In an immune network a mermory can potentially be modeled by a fixed point of
the network. The concentrations at the fixed point are held constanrt through the
feedback of one type to another type. Modecls of the form of Equations (14) and (16)
contain fixed points that might be appropriate for immune memory. However, it is
clear from experiments that T-cells are necessary for memory, and so must be added
to immune networks to recover this effect.

T-cells are a key element missing from most current immune network models. T-
cells play an important role in stimulating or suppressing reactions between antibodies
and antigens, and are essential to immune memory. From the point of view of learning
in the network, they may also indirectly act as specific connection parameters.

One of the most interesting activities of the immune system is “antigen presen-
tation”. When a B-cell or macrophage reacts with an antigen it may process it,
discarding all but the antigenic determinants. It then presents the antigenic determi-
nant on its surface (as a peptide bound to an MHC molecule). The T-cell reacts with
the antigenic determinant and the B-cell, and based on this information may either
stimulate or suppress the B-cell. Note that antigen presentation provides information
about both the B-cell and an antigen, and thus potentially about a specific connection
in the network.

In a connectionist model, this may amount to a connection strength parameter;
a B-cell presenting a given active site contains information that is specific to two
nodes, one for the B-cell of the same type as the T-cell, and one for the antigen
whose active site is being presented (which may also be another antibody). Due to
their interactions with T-cells, the B-cell populations of type i presenting antigenic
determinants from type j may play the roles of the connection parameters w,,.

At this point, it is not clear how strongly the absence of explicit connection pa-
rameters limits the computational and learning power of immune networks. However,
it scems likely that before they can realize their full potential, connection parame-
ters must be included, taking into account the operation of T-cells. T-cells act like
catalysts, cither suppressing or enhancing reactions. Since catalytic activity is one
of the primary tools used to implement the internal functions of living organisms,
it i3 not surprising that it should play a central role in the immune system as well.
Autocatalytic activity is discussed in more detail in the next section.

6 Autocatalytic networks

6.1 Background

All the models discussed so far are designed to perform learning tasks, The autocat-
alytic network model of this section differs in that it is designed to solve a problem
in evolutionary chemistry. Of course, evolution may also be regarded as a form of
learning. lFor autocatalytic networks there are signiticant differences in the way this
happens.

The central goal of the antocatalytic network is to solve a classic problem in
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the origin of life, namely, to demonstrate an evolutionary pathway from a soup of
monomers to a polymer metabolism with selected autocatalytic properties, which in
turn could provide a substrate for the emergence of conternporary (or other) life forms.
When Miller and Urey discovered that 2mino acids could be synthesized de novo from
tl.c hypothetical primordial constituents “earth, fire and water” [43], it seemed but
a small step to the synthesis of polymers built out of amino acids (polypeptides and
proteins). It was hoped that RNA and DNA could be created similarly. However,
under normal circumstances longer polymers are not favored at equilibrium. Living
systems, in contrast, contain DNA, RNA, and proteins, specific long polymers which
exist in high concentration. They are maintained in abundance by their symbiotic
relationship wivh each other: Proteins help replicate RNA and DNA, and DNA and
RNA help synthesize proteins. Without the other, neither would exist. How did such
a complex system ever get started, unless there were proteins and RNA to begin with?
The question addressed in references {36,20,8] is: Under what circumstances can the
synthesis of specific long polymers be achieved beginning with simple constituents
such as monomers and dimers?

The model here applies to any situation in which unbranched polymers are built
out of monomers through a network of catalytic activity. The monomers come from
a fixed alphabet, a,b,¢,.... They form one-dimensional chains which are represented
as a string of moncmers, acabbacbc.... The monomer alphabet could be the twenty
amino acids, or it could equally well be the four nucleotides. This changes the pa-
rameters but not the basic properties of the model. The model assumes that the
polymers have catalytic properties, i.e., that they can undergo reactions in which one
polymer catalyzes the formation of another. If 4, B, C, and £ are polymers, and H
is water, then the basic reaction is:

A+BE2C+1H (18)

where £ is written over the arrows to indicate that it catalyzes th. reaction.

Our purpose is to model a chemostat, a reaction vessel into which monomers are
added at a steady rate. The chemical species that are added to the chemostat are
called the food sct. We assume that the mass in the vessel is conserved, for example,
by simply letting the excess soup overflow. For convenience we assume that the soup
is well-stirred, so that we can inodel it by a system of ordinary differential equations.

In any real system it is extremely difficult to determine from first principles which
rcactions will be catalyzed, and with what aflinity. Very few if any of the relevant
properties have been measured experimentally in any detail, and the number of mea-
surements or computations that would have to be made in order to predict all the
chemical propertics is hopelessly complex. Qur approach is to invent an artificial
cheniistry and attempt to make its properties at least qualitatively similar to those
of & real chemical system. Actually we use one of two different artificial chemistries,
based on two different principles:

o Random assignment of catalytic propertics.
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¢ Assignment of catalytic properties based on string matching.

These two simple artificial chemistries lie on the borders of extreme behavior in :+-al
chemistry. In some cases, we know that changing one monomer can have a drama:'c
effect on the chemical properties of a polymer, either because it causes a drastic
change in the configuration of the polymer or because it alters a critical site. If this
were always the case, then random chemistry would be a reasonable model.

In other cases, changing a monomer has only a small effect on the chemical prop-
erties. Our string matching model is closer to this case; altering a single monomer will
only change the quality of matching between two strings by an incremental amount,
and should never cause a dramatic alteration in the chemical properties of the poly-
mer. _

Another difficulty of modeling real chemistry is that there is an extraordinarily
large number of possible reactions. In a vessel with all polymers of length [ or less,
for example, the total number of polymer species is T{=! m/, where m is the number
of distinct monomers. For example, with m = ¢J and { = 100, the number of polymer
species is in excess of 20'®, an extremely large number, and the number of possible
reactions is far larger than this. To get around tais problem, to first approximation, we
neglect spontan.ous reactions, and assume that tne catalytic properties are sufficiently
strong that all catalyzed reactions are much faster than spontaneous reactions!®.

Once we have assigned chemical properties, we can represent the network of cat-
alyzed chemical reactions as a graph, or more precisely, as a poly-graph with two
types of nodes and two types of connections [20). Because of catalysis the graph
must be more complicated than for any of the other networks discussed so far. An
example is shown in Figure (7). One type of node is labeled by ovals containing the
string representation of the polymer species. The other type of node corresponds to
catalyzed reactions, and is labeled by black dots. The dark black connections are
undirected (because the reactions are reversible), and connect each reaction tu the
three poiymer species that participate in it; the dotted connections are directed, and
connect the reaction to its catalysts. All the edges connect polymers to reactiouns,
and cach reaction has at least four connections, three connections for the recaction
products and one or more for the catalyst(s). In this illustration we have labeled the
members of the food set by double ovals.

If we use the random methed of agsigning chemical properties, then the graph is a
random graph and can be studied using standard tech' iques. The probability p that
a reaction selected at random will be catalyzed contruls the ratio of connections to
nodes. As p increases so does this ratio. As p grows the graph becomes more and
more connected, i.e., more dense. At a critical threshold almost every node becomes
connected to at least one other node. As studied in references 36,20, the critical

810 more recent work (7] we make a tractable model for approximate treatment of spontancous

reactions by luinping together all the polymer species of a given length that are not i the auto-
catalytic network, assuming that they all have the sarae concentrition. These can be viewed w o
new type of node i the network. This allows us to ciude the oilect of spontaneous reactions when
necessary.
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Figure 7: The graph for an autocatalytic network. The ovals represent polymer
species, labeled by strings. The black dots represent reactions. The solid lines are
connections from polymer nodes to the reactions in which they participate. The
dotted lines go from polymer species to the reactions they catalyze. The double
ovals are special polymer nodes corresponding to the elements of the food set, whose
concentrations are supplied externally.
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threshold also depends on the size of the food set, i.e., how many chemical species
are in the food set. Using a very approximate estimate of a physically reasonable
value of p, we can make a connected graph from a food set of monomers and dimers
[20]. Note that spontaneous reactions create a significant number of dimers, so that
supplying monomers automatically produces a supply of dimers as well.

The graph-theoretic analysis only addresses the question of who reacts with whom,
and begs the central (and much more difficult) question of concentrations. Numer-
ical modeling of the kinetics for any given catalyzed reaction is straightforward but
cumbersome. We introduced a simplified technique for treating catalyzed reactions
of this type in reference (20] that approximates the true catalyzed kinetics fairly well.

Modeling of the complete kinetics for an entire reaction graph is impossible, since
the graph is infinite and under the laws of continuous mass action, even if we initialize
all but a finite number of the species to zero concentration, an instant later they will all
have non-zero concentrations. From a practical point of view, however, it is possible
to circumvent this problem by realizing that any chemical reaction vessel is finite,
and species whose continuous concentrations are significantly below the concentration
corresponding to the presence of a single molecule are unlikely to participate in any
reactions. Thus, to cope with this problem we introduce a concentration threshold,
and only consider reactions where all the members on either side of the reaction
equation (either A, B, and E, or C and E) are above the concentration threshold.
This then becomes a metadynamical system: At any given time, only a finite number
of species are above the threshold, and we only consider a finite graph. As the kinetics
act, species may rise above the concentration threshold, so that the graph grows, or
they may drop below the threshold, so that the graph shrinks.

One of the main goals of this model is to obtain closure in the form of an auto-
catalytic set. This is a set of polymer species such that each member of the set is
produced by at least one catalyzed reaction involving only other members of the set
(including the catalysts). Since the reactions are reversible, a species can be “pro-
duced” either by cleavage or condensation, depending on which side of equilibrium it
finds itself. Thus an autocatalytic set can be quite simple; for example,

A+BQC+H (19)

is an autocatalytic set, and so is

A+B;C+H. (20)

A, B. and C will be regenerated by supplying eitlicr A and B, or by supplying C.
Note, however, that such simple autocatalytic sets are anly likely to occur when the
probability of catalysis is very high. As p decreases the average size of the smallest
autocatalytic set (in a finite population) increases. Depending on the councctivity
of the autocatalytic set it may be possible to sustain a large reaction network by
supplying only a few polymer species.

There are three notions of the formation of autocatalytic sets, depending on what
we mean by “produced by” in the definition given above:
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Table 2: An experiment in varying tae food set of an autocatalytic set. The table
shows the four species cf the food set, and the concentration of each that is supplied
externally per unit time. Case v is used to “grow” the autocatalytic set, and cases w
- 2z are four changes made once the autocatalytic set is established. x and z kill the
autocatalytic set, while w and y sustain it with only minimal alteration, as shown in
Figure (8).

e Graph theoretic. The subgraph defined by the autocatalytic set is closed, so
that each member is ccnnected (by a solid connection) to at least one reaction
catalyzed by another member.

e Kinetics. Each member is produced at a level exceeding a given concentration
threshold.

o Robust. The autocatalytic set is robust under at least some changes in its
food set, i.e., its members are at concentrations sufficiently large and there are
enough pathways so that for some alterations of the food set it remains a kinetic
autocatalytic set, capable of regenerating removed elements at concentrations
above the threshold.

These notions are arranged in order of their strength, i.e., an autocatalytic set
in the sense of kinetics is automatically an autocatalytic set in the graph-theoretic
sense, and a robust autocatalytic set is automatically a kinetic autocatalytic set.

Describing the details of the conditions under which autocatalytic sets can be
created is outside of the scope of this paper. Suffice it to say that, within our arti-
ficial chemistry we caa create robust autocatalytic sets. Consider, for example, an
autocatalytic set based on the monomers a and b, originally formed by a food set
consist'ng of the species a, b, ab, and bb, as shown in Figure (8).

We plot the concentrations of the 21 polymer species in the reactor against an
index that orders the species according to their length. We compare four different
alterations of the original food set, all of which have the same rate of mass input. For
two of the altered food sets the concentration of the members of the autocatalytic set
remains almost the same; they are all maintained at high zoncentration. For the other
two, the autocatalytic set “dies” in that some of the members of the set fall below the
concentration threshold, and most of the concentrations decrease dramatically. [7)

Our numerical evidence suggests that any fixed reaction network always approaches
a fixed point where the concentrations are constant. However, since spontancous re-
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Figure 8: An experiment demonstrating the robust properties of an autocatalytic set.
The food set is originally a, b, ab, and bb. The food set is altered in four different
ways, as shown in Table 2. For each alteration of the food set the concentrations
of all 21 polymers in the autocatalytic set are plotted against the “polymer index”.
(The polymer index assigns a unique label to each polymer. It is ordered according
to length, but is otherwise arbitrary.) Two of the alterations of the food set cause
the autocataiytic set to die, while the other two hardly change it. Like a robust
metabolism, the autocatalytic set can digest a variety of different foods.
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actions always take place, there is the possibility that a new species will be created
that is on the graph of the autocatalytic set, but which the kinetics did not yet reach.
If the catalyzed pathiway is sufficiently strong, then the new species may be regener-
ated and added to the (kinetic) autocatalytic set. This is the way the autocatalytic
sets evolve; spontaneous reactions provide natural variation, and kinetics nrovides
selection.

Autocatalytic networks create a rich, focused set of enzymes at high concentra-
tion. They form simple metabolisms, which might have provided a substrate for
contemporary life.

The results discussed here, as well as many others, will be described in more detail
in a future paper {7]. We intend to study the evolution of autocatalytic sets, and to
make a closer correspondence to experimental parameter values.

6.2 Comparison to generic network

e Nodes correspond to both polymer species and to reactions. The states are
determined by the concentrations of the polymers.

e Connections. The graph connections are quite different in this system, in
that there are no direct reaction connections to the same types of nodes. Each
reaction node is connected by undirected links to exactly three polymer nodes,
and contains one (directed) catalytic link to one or more polymer nodes. A
polymer node can be connected Ly a solid link to any number of reaction nodes,
and car. have any number of catalytic links to reaction nodes.

e Dynamics. The dynamics is based on the laws of mass action. The equations
are physically realisitic, and are considerably more complicated than those of
the other networks we have discussed. Arbitrarily label all the polymer species
by an index i, and let z, represent the concentration of the i'* species. Assume
that all the forward reactions in Equation (18) have the same rate constant
ks, all the backward reactions have the same rate constant k., and that all
catalyzed reactions have the same velocity v. Let the quantity my,., represent
the connections in the two graphs, where ¢ and j refer to the two species that
Join together to form & under enzyme e. i, = 1 when there is a catalyzed
reaction, and m . = 0 otherwise. m;,,, = m,;,. Let the dissipation constant
be &, iet the rate at which elements arc added to the foodset be d, and let A
be the concentration of water. Neglecting the effects of enzyme saturation, the
equations can be written

1.
‘(-dﬁtﬁ = Z nl.,kc(l + V.r.)(k/‘chr) - k'h‘rk)
) ey

+2° ) M1+ v2)(kohey = kprer)) = key + df (2) (21)

lim.e
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f is a function whose value is one if z4 is in the food set, and is zero otherwise.
More accurate equations incorporating the effect of enzyme saturation are given
in reference [20].

An effective instantaneous connection strength can be computed by evaluating
%:. The resulting expression is too complicated to write here. Like the immune
network, the instantaneous connection strength can be either excitatory or in-
hibitory depending on where the network is relative to its steady state value.
In contrast to the other networks we have studied, there are no special vari-
ables in Equation (21) that explicitly play the role of either node or connection
parameters. The concentration of the enzymes z, that catalyze a given reac-
tion is suggestive of the connection paramcters in other connectionist networks.
However, since any species can be a reactant in one equatica and an enzyme in
another, there is no explicit separation of time scales between 2, and the other
variables.

e Graph dynamics. The separation of time scales usually associated with learn-
ing occurs entirely through modificatioa of the graph. The deterministic behav-
ior for any given graph goes to a fixed point. However, in a real autocatalytic
system there are always spontaneous reactions creating new species not con-
tained in the catalytic reaction graph. It occasionally happens that one of the
new species catalyzes a pathway that feeds back to create that species. Such
a fluctuation can be amplified enormously, altering the part of the catalyzed
graph that is above the concentration threshold. This provides a mechanism
for the evolution of autocatalytic networks.

Autocatalytic networks are interesting from a connectionist point of view because
of their rich graph structure and because of the possibilities opened up by catalytic
activity. Catalytic activity is analogous to amplification in clectronic circuits; it
results in multiplicative terms that either amplify or suppress the activity of a given
node. The fixed points of the nctwork may be thought of as self-sustaining memories,
caused by the feedback of catalytic activity. The dynamical equations that we use here
are based on reversible chemical reactions. and lead to unique fixed points. However,
other chemical reaction networks can have multiple fixed points, and it seems likely
that when we alter the model to study irreversible reactions such as those observed
in contemporary metabolisms, we will see multiple fixed points. In this case the
computational possibilitics of such networks become much more complex.

7 Other potential examples and applications

The four examples discussed here are by no means the only ones where connectionist
models have been used, or could be used.  Limitations of space and time prevent
a detailed examination of all of the possibilities, but a few deserve at least cursory
mention,
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o Bayesian inference networks, markov networks, and constraint net-
works are procedures used in artificial intelligence and decision theory for orga-
nizing and codifying causal relationships in complex systers (49]. Each variable
corresponds to a node of the network. Each node is connected to the other vari-
ables on which it depends. Bayesian networks are based on conditional proba-
bility distributions, and use dicected graphs; markov networks are based on joint
probability and have undirected graphs; constraint networks assume determin-
istic constraints between variables. These networks are most commonly used
to incorporate prior knowledge, make predictions and test hypotheses. Learn-
ing good graph representations is an interesting problem where further work is
needed.

¢ Boolean networks. A neural network whose transition rule is a binary au-
tomaton is an example of a boolean network. In general there is no need to
restrict the dynamics to the sum and threshold rules usually used in neural
nets (other than the fact that this may make the learning prcblem simpler). In-
stead, the nodes can implement arbitrary logical (Boolean) functions. Kauffman
studied the emergent properties of networks in which each node implements a
random Boolean function (38,37). (The functions are fixed in time, but each
node implements a different function.) More recently, Miller and Forrest [44)
have shown that the dynamics of classifier systems can be mapped into Boolean
networks. This allows them to describe the emergent properties of classifier sys-
tems. Their work impliciily maps Boolean networks to the generic connectionist
framework. The formulation of learning rules for general Boolcan networks is
an interesting problem that deservey further study. Kauffman has done some
work using point mutation to modify the graph [39).

¢ Ecological models and population genetics are a natural area for the
application of connectionism. There is a large body of work modeling plant
and animal populations and their interactions with their environment in terms
of differential equations. In these models it is necessary to explicitly state
how the populations interact, and translate this into mathematical form. An
alternative is to let these interaction evolve. A natural framework for such
models is provided by the work of Maynard Smith in the application of game-
theoretic models to population genetics and ethology [62]. The interactions of
the populations with each other are modecled as game-theoretic strategics, In
these models, however, it is necessary to state in advance what these strategies
are. A natural alternative is to let the strategies cevolve. Some aspects of
this have been addressed in the fledgling theory of evolutionary games [24).
A connectionist approach is a natural extension of this work. The immune
networks discussed here are very similar to predator-prey models. The strings
enceding chemical properties are analogous to genotypes of a given population,
and the matrix of wteractions are analogous to phenotypes.
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¢ Economics is another natural area of application. Again, existing game-
theoretic work suggests a natural avenue for a connectionist approach, which
could be naturally implemented along the lines of the immune model. The
binary strings can be viewed as encoding simple strategies, specifying the inter-
actions of economic agents. Indeed, there are already investigations of models
of this type based on classifier systems [4,5,41].

o Game theory is a natural area of application. For example, Axelrod (6] has
studied the game of iterated prisoner’s dilemma. His approach was to encode
recent past moves as binary variables, and encode the strategy of the player
as a Boolean function. He demonstrated that genetic algorithms can be used
to evolve Boolean functions that correspond to good strategies. An alterna-
tive approach would be to distribute the strategy over many nodes, and use a
connectionist model instead of a look-up table. Such models may have applica-
tions in many different problems where evolutionary games are relevant, such
as economics and ethology.

e Molecular evolution models. The autocatalytic model discussed in detail
here is by no means the only connectionist model for molecular evolution. Per-
haps one of the earliest example is the hypercycle model of Eigen and Scliuster
(19], which has recently been compared to the Hopfield neural network models
[32,52]. For a review see Hofb~uer and Sigmund [27].

8 Conclusions

[ hope that presenting four different connectionist systems in a common framework
and notation will make it easier to transfer results from one field to another. This
should be particularly useful in areas such as immune networks, where connectionist
models are not as well developed as they are in other arcas, such as neural networks.
By showing how similar mathematical structure manifests itself in quite different con-
texts, | hope that [ have conveyed the broad applicability of connectionism. Finally,
I hope that these mathammatical analogies make the underlying phenomena clearer.
For example, comparing the role of the lymphocyte in these models to the role of
neurons may give more ingight into the construction of immune networks with more
computational power.

8.1 Open questions

Hopefully the framework for connectionist models presented here will aid the develop-
ment of a broader mathematical theory of connectionist systems. From an engineering
point of view, the central question is: What is the most effective way to construct
good connectionist networks? Questions that remain unclear include:

o In: systems, such as neural networks and classilier systems, a connection
18 alv i either inhibitory or excitatory, In others, such as immune networks
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and autocatalytic networks, a connection can be either inhibitory or excitatory,
depending on the state of the system. Does the latter more flexible approach
complicate learning? Does it give the network any useful additional computa-
tional power?

[s it essential to have independent parameters for each connection? In neural
nets, each connection has its own parameter. In classifier systems, the use
of the “don’t care” symbol means that many connections are represented by
one classifier, and thus share a common connection parameter. This decreases
the flexibility of the network, but at the same time gives an efficient graph
representation, and aids the genetic algorithms in finding good graphs. In B-
cell immune networks the parameters reside entirely in the nodes, and thus
as a single parameter changes many different connections are effected. Does
this make it impossible to implement certain functions? How does this effect
learning and evolution? (It is conceivable that the reduction of parameters may
actually cause some improvements.)

What is the optimal level of complexity for the transition rule? Some neural
nets and classifier systems employ simple activation functions, such as linear
threshold rules. Somewhat more complicated nonlinear functions, such as sig-
moids, have the advantage of being smooth; immune networks have even more
complicated activation functions. An alternative is to make each node a flex-
ible function approximation box, for example, with its own set of local lincar
functions, so that the node can approximate functions with more genczal shapes
(22.67). However, complexity also increases the number of {ree parameters aid
potentially increases the amount of data neceded for learning.

A related question concerny the role of catalysis. In autocatalytic networks, a
node can be switched on or off by another node through multiplicative coupling
terms. In coutrast to networks in which inputs can only be summed, this allows
a single unit to exert over-riding control over another. A similar approach has
been suggested in £ = [T neural networks [58]; T-cells and uneuro-transmitters
may play o similar role in real biological systems. How valuable is specific catal-
ysie to a network? How ditficult is the learning problem when it is employed?

What are the optimal approaches to evolving good graph representations” Moat
of the work in this ares has been done for classifier systems, although even here
many important issues remain to be clarified. All known algorithms that can
create connections and nodes, such as the genetic algorithms, are stochastic:
there are deterministic pruning slgorithms that can only destroy connections,
such as orthogonal projection. Are there eflicient deterministic algorithms for
creating new graph connections?

What are the best learning algorithms? A great deal of effort has been de-
voted to answering this question, but the answer iy still obscure. A perusal of
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the literature suggests certain general conclusions. For example, in problems
with detailed feedback, e.g. a list of known input-output pairs, deterministic
function fitting algorithms such as least-squares minimization (of which back-
propagation is an example) can be quite effective. However, if the search space
is not smooth, for example because the samples are too small to be statistically
stable, stochastic algorithms such as crossover are often more effective [1]. In
more general situations where there is no detailed feedback, there seems o be
no general consensus as to which learning algorithms are superior.

Thus far, very few connectionist networks make use of nontrivial computational
capabilities. In typical applications most connectionist networks end up functioning as
stimulus-response systems, simply mapping inputs to outputs without making use of
conditional looping, subroutines, or any of the power we take for granted in computer
programs. Even in systems that clearly have a great deal of computational power in
principle, such as classifier systems, the solutions actually learned are usually close
to look-up tables. It seems to be much easier to implement effective learning rules
in simpler architectures that sacrifice computational complexity, such as feed-forward
networks.

It may be that there is an inherent trade-off between the complexity of learning
and the complexity of computation, so that the difficulty of learning increases with
with computational power. At one end of the spectrum is a look-up table. Learning
is trivial; examples are simply inserted as they occur. Unfortunately, all too often
neural network applications have not been compared to this simple approach. [n the
infamous NET-talk problem (61}, for example, a simple look-up table gives better
performance than a sum/sigmoid back-propagation network (3). Simple function ap-
proximation is one level above a look-up table in computational complexity: functions
can at least attempt to interpolate between examples, and generalize te examples that
are not in the learning data set. Learning is still fairly simple, although already the
subtleties of probability and statistics begin to complicate the matter. Ifowever,
simple function approximation has less computational capability than a finite state
machine. There are no good learning algorithins for finite state machines. Without
counting, conditional looping, etc.. many problems will simpiy remain insoluble.

It is probably more likely that learning is possible with mere sophisticated compu-
tational power, and that we simply do not vet know how to accomplish it. I suspect
that the connectionist networks of the future will be full of loops.

Connectionist models are a useful tool for'solving problems in learning, acaptation.
They make it possible to deal with situations in which there are an infinite number
of possible variables, but in which only a finite number are active at any given time,
The connections are explicit but changeable. We have only recently begun to acquire
the computational capabilities to realize their potential. T suspect that the next
decade will witness an enormous explosion in the application of the connectionist
methodology.

However, connectionisiy represents a level of abstraction that is ultimately limited
by such fuctors as the need to specily connections explicitly, and the lack of built in



spatial structure. Many problems in adaptive systems ultimately require models such
as partial differential equations or cellular automata with spatial structure [40]. The
molecular evolution models of Fontana et al., for example, explicitly model the spatial
structure of individual polymers in an artificial chemistry. As a result the phenotypes
emerge more naturally than in the artificial chemistry discussed here. On the other
hand, this requires more computational resources. For many problems connectionism
may provide a good compromise between accurate modeling and tractability, appro-
priate to the study of adaptive phenomena during the last decade of this millenium.

8.2 Rosetta stone

This paper is a modest start toward creating a common vocabulary for connectionist
systems, and unifying work on adaptive systems. Like the Roszatta Stone, it contains
only a small fragment of knowledge. I hope it will nonetheless lead to a deeper
understanding in the fuiure.
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Forrest, André Longtin, Steve Omohundro, Norman Packard, Alan Perelson, and Paul
Stolorz for valuable discussions, and Ann and Bill Beyer for lending valuable refer-
ences on the Rosetta Stone.

I urge the reader to use these results for peaceful purposes.

9 Appendix: A superficial taxonomy of dynami-
cal systems

Dynamical systems can be trivially classified according to the continuity or locality
of the underlying variables. A variable either can be discrete, i.e. describable by a
finite integer, or continuous. There are three eysential properties;

o Time. All dynamical systems contain time as either a discrete or continuous
variable,

o State. The state can either be a vector of real numbers, as in an ordinary
differential equation, or integers, as for an automaton.

o Space plays a special role.in dynamical systems. Some dynamical models, such
as automata or ordinary differential equations, do not contain the notion of
space. Other models, such as lattice maps or cellular automata, contain a notion
of locality and therefore space even though they are not fully continuous. Partial
differential equations or functional maps have continuous spatial variables.

This is sununarized in table .
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Table 3: A Rosetta Stone for connectionism.

47

[ Generic Neural Net | Classifier Immune Net Autocatalytic |
System Net
node neuron message antibody type polymer
species
state activation intensity free polymer
level antibody/antigen| concentration
rnnu-nugtmnn
connection | axon/synapse/| classifier chemical catalyzed
dendrite reaction of chemical
antibodies reaction
parameters || coniiection strength reaction e catalytic
weight and affinity “velocity
specificity lymphocyte
concentration
interaction || sum/sigmoid | linear beil-shaped mass action
rule threshold
and max
learning Hebb, bucket clonal selection | apptoach to
algorithm back-prop brigade (gen. Hcbb) attractor
(gen. Hcbb)
graph synaptic genetic genetic e artificial
dynamics plasticity algorithms elgorithms chemistey rules
e spontaneous
e {1 | reacrions




Cype of dynemical system __ [space | tme | representation ]
partial differential equations continuous | continuous continucus
computer representation of a p.d.e. | local local local
functional maps continuous | discrete continuous
ordinary differential equations none continuous continuous
lattice medels local discrete or continuous | continuous |
maps-(_dif_ference equations) none discrete continuous
cellular automata local discrete discrete
automata none discrete discrete

Table 4: Types of dynamical systems, characterized by the nature of time, space,
and state. “Local” means that while this property is discrete, there is typically some
degree of continuity and a clear notion of neighborhood.
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